
 1

An Innovative Approach to an Isometric Game Engine

Authors: Caius Grozav, Dawn Mercer and Dmitriy Svetov, Seneca College, Toronto, ON

Abstract
In educational game design critical factors include a high level of engagement and play value
along with ease of distribution. In the development of a game related to health issues under
development as part of the SAGE project, it was determined that a Flash game engine could be
designed to meet the increasingly sophisticated requirements of early teen gamers/learners as
well as being readily available online for ease of use in educational settings. This paper explores
the issues encountered in developing a Flash game engine and the unique solutions developed
to date.

Introduction
In typical game design, the game story is
imagined, the game play is defined and the
internal elements are described before
development begins. The constraints of the
project defined here necessitated a creative
process in game engine design. This
involved an iterative process, based on trial
and error, to formulate the functionality of a
successful new game engine (El Rhalibi,
2005). As development began, the game
concept was defined for the programming
team along with some basic constraints of
the game. The programming group was
assigned to explore building an on-line
engine that could accommodate open
spaces with several customizable
characters. Other members of the team
worked in parallel to precisely define the
game logic.

The game engine development described
here is part of the SAGE Project.
("Simulation and Advanced Gaming
Environments for Learning" is a SSHRC
funded project exploring the potential of
simulations and games to support learning
in light of new technologies, new media and
our knowledge of how people learn.) The
game created in this project, Contagion,
aims to provide an educational experience
relating to health issues. It is expected to
function in Canadian high schools and must
run over the Internet, even at low bandwidth.
Since the game will be played in homes and
school computer labs, no component of the
game should be installed on the client
machine. Most important is that the game
must be appealing to the target group, and
provide the look and feel that approximates
commercial 3D gaming environments.

Background Research

Feedback from our target user group
indicated that:

• They preferred simulation games
online;

• They do not like 2D environments
for play;

• They do not like the boxy
environment in isometric spaces
(jumping from box to box);

• They want to be able to take full
ownership of their character.

Existing online games were explored in
depth. From sites such as Top 200 Hot
Games
http://www.colonize.com/content/displaygam
es.nc.php?a=51&b=100 it became clear
that the game engine required for this
project must allow the player to be more
involved in the game play by having the
main character/s take on the user point-of-
view. The ‘shoe box’ perspective of games
such as Pharaoh’s Tomb
http://www.groovyjava.com/games/pharaoh-
tomb/pharaohs-tomb.php was not broad
enough to provide the environment
envisioned for this project.

Research confirmed that ‘Tile Based
Games’ such as those demonstrated at the
sites listed below would be explored as
initial models for development.

• Tile Based Games
http://www.tonypa.pri.ee/tbw/

• Tile / Object Based Flash Tutorial
http://www.strille.net/tutorials/part1_
scrolling.php

• Moxiecode
http://oos.moxiecode.com/

Brief Survey of Game Engine
Development

Flash was designated as the authoring tool,
and an isometric environment was accepted
as a compromise between the flat 2D and
full 3D. Since no existing Flash game engine

http://www.sshrc.ca/web/whatsnew/press_releases/2003/ine_cura_sfu_e.asp
http://www.sshrc.ca/web/whatsnew/press_releases/2003/ine_cura_sfu_e.asp
http://www.colonize.com/content/displaygames.nc.php?a=51&b=100
http://www.colonize.com/content/displaygames.nc.php?a=51&b=100
http://www.groovyjava.com/games/pharaoh-tomb/pharaohs-tomb.php
http://www.groovyjava.com/games/pharaoh-tomb/pharaohs-tomb.php
http://www.tonypa.pri.ee/tbw/
http://www.strille.net/tutorials/part1_scrolling.php
http://www.strille.net/tutorials/part1_scrolling.php
http://oos.moxiecode.com/

could be identified that would fulfill the
requirements of the game design, a new
game engine would have to be created.

Several technical solutions were tested in
order to minimize the load on the client and
thus increase the speed of game play.

.

Fig. 1 - Earliest stage of game development.

Figure 1 illustrates an early tile-based
environment that allows the user to control
the movement of the character on the
screen and the visual layout of the space.
The character moves on the screen from tile

to tile (although tiles are not visually explicit).
The “Shoe Box” layout was the major
problem in this model because wider
environments where required to
accommodate by the narrative.

Fig. 2 – Eliminating the “free” space.

In the second model tiles are defined as
Flash movie clips. The space is opened up
by adding more tiles. The movement is
simulated by loading and removing tiles

dynamically (see Fig. 2). This resulted in an
overload of the CPU. The engine was
unacceptably slow; cropping of graphics in
these step-sized tiles was also a problem.

 2

Fig. 3 - Large tiles

We experimented with models of various tile
sizes trying to find the best compromise for
tile size and speed (Fig. 3). The engine was
now fast enough, but the character could not
get close to objects on these large tiles that
were required to provide adequate game

speed. This problem was solved by
subdividing tiles into invisible squares
(“nonwalkable tiles”) dynamically and
redesigning the logic of the movement as
detailed in the following discussion.

 3

 Components of the GAME ENGINE

The basic structure of our game engine is shown in the following diagram:

 4

1. GAME

2. Map

 5. Tile

a. Object

 b. Floor

 c. Character

6. Maps

 7. NPC

 8. Inventory

3. Character Info.

 4. Scoring Logic

Game component descriptions:

1. GAME
Contains all preloaders for the
components and initial settings for the
current level.

2. Map
The Map is an array of tile objects – the
class defines the movement and general
behavior of the tiles on the screen
(movement is simulated by the map
behind the character in response to
mouse click or arrow key press). It also
contains the mapping of the isometric
spaces (Maps) and the non playable
characters (NPC’s).

3. Character Info.
This class holds information about the
type of character, gender, and
color/appearance of character
components. It has its own database
connectivity functions, allowing saving
and/or retrieving character information.

4. Scoring Logic
This is a set of classes, defining the
scoring logic for every level in the game.

In our model we have 3 levels, but more
can be added by adding new classes.

5. Tile
The Tile object is the building block of
the isometric environment. It is designed
as a stand-alone Flash movie clip, and it
is preloaded every time the environment
changes.

a. Object

The Object is a flash movie clip that is
part of every Tile instance. All possible
layouts for a tile in a given environment
are defined in key frames (some objects
are stored in more than one frame – e.g.
a sofa needs 2 tiles, and a van 3).
Objects are designed in 3D Studio MAX
and/or Swift 3D, cropped to the size of a
tile, and exported to Flash.
Defining an environment implies building
an Object movie clip, a floor (both inside
a Tile object), and a Maps array defining
which key frame of the Object movie will
be displayed on each Tile instance.
For ‘nonwalkable’ tiles the key frames of
the Object movie clip also contain an
array of codes that detail the
characteristics of the current visual

layout as later explained in the section
on Movement and Obstacle Avoidance.

b. Floor

The floor is a movie clip instance inside
the Tile object, defining the visual layout
(texture) of the floor in a given
environment; it also detects the
presence of the character movie clip on
the tile.

c. Character

Every character in the game is designed
as a standalone movie clip and is loaded
on top of the current tile in the
environment. Characters are designed
and animated in 3D Studio MAX and/or
Swift 3D. For each character, 5
directions of movement are rendered
(the remaining 3 directions are displayed
by mirroring). The animated character is
then exported for Flash on layers
(highlights, colors, and shadows). In
Flash, the colors are separated in layers
corresponding to the customizable
components of the character and
converted into color objects.
The actual color of every component
can be customized in the character
customization section and is stored in a
database by the Save command.

6. Maps
The Maps are arrays of codes
controlling how the space should be
rendered. The size of the array defines
the number of tiles in the environment
(in our case, 10x10 smallest, and 30x30
maximum). The custom codes in the
array elements define the visual
appearance of the corresponding tile
and its type. There are three basic types
of tiles defined: “walkable” tiles (the
character is free to move anywhereon
the tile), “nonwalkable” tiles (there is an
object on the tile obstructing some
movements of the character), “pickable”
tiles (there is an object that can be
picked-up/engaged by the character on
the tile), and any combination of the
above mentioned.

7. NPC (Non Playable Characters)
Non Playable Characters (NPCs) are
loaded on top of the map, but they are
not part of it – this way they can be
loaded and unloaded as needed,
without affecting the playable space of
the game. The player can interact with
them, but cannot control them.

Two types of NPC’s are defined:
Static – they occupy a fixed position on
the map and move with it (e.g. a sick
person to be treated by the player).
Dynamic – they are rendered the same
way the character is, and they move on
top of the map, following an invisible grid
of nodes and arches at random (like
Pac-Man monsters). The grid moves
with the map, its logic is totally
independent, but programmable if
needed.

8. Inventory
Inventory is a separate class organized
as an array of objects that allows
assigning items not only to the character
and NPC’s, but also to objects (desk,
cupboard, bin). These items can be
used by the player (e.g. a mask can be
moved from the inventory of the
cupboard to the inventory of the
character).

Unique Approaches to Movement and
Obstacle Avoidance Developed

a. Large Tiles
An array of 7x7 tiles is displayed from
the game environment described by
information in the Maps.

Fig. 4

The tile can have its own actions, an
“object” movie clip, and a “floor” movie
clip (Fig. 4).

Fig. 5

The “floor” movie clip contains all
possible graphic layouts of the floors in
one level stored in key-frames. It also
has actions to determine the presence
of the character on the tile.

Fig.6

 5

 6

All the objects and graphics (other than
floors) in an environment are loaded as
key-frames in the “object” movie (Fig. 6).
On the screen we display an array of 49
instances of the large tile, each one
displaying one floor key-frame and one
object key-frame according to the
information stored in the map of the
environment.

b. Movement
The character will always be positioned
in the center of the “stage”. Movement is
simulated by moving the map behind it.
The character appears to walk by
looping one of the 8 possible directions
of movement in the isometric space.

i. Movement between tiles
At the level of one tile, the map is
actually moved behind the character.
In order to avoid continuous loading and
unloading Tile objects, when the
character is moving onto a different tile,
the entire environment is rebuild. The
Object and Floor movie clips inside
every Tile instance are reset to display
different key frames and the entire map
is repositioned before being displayed.
As a result, the Map moves only the size
of an isometric tile, and repainting the
environment creates the illusion of
continuous movement. The relative
position of the character in the repainted
environment is reflected by changing the
depth of the Character movie clip in
conjunction with the display of objects
on neighboring tiles.

ii. Obstacle avoidance
In order to increase the realism of the
simulation in achieving obstacle
avoidance the following new approach
was developed:
On arrow key press, the character will
take one step in the corresponding
direction. If the mouse button is clicked
on the “stage”, the coordinates of that
point will be stored as the destination.
Distances on x and y between the
current position and the destination are
computed, and based on those values,
the character starts walking, always
selecting the shortest path (with the
constraint of only 8 possible directions of
movement).
Three basic types of tiles are defined:
• “Walkable” tiles have no restrictions

in the movement of the character in
any direction.

• “Nonwakable” tiles have objects that
restrict the movement of the
character, totally or just in some
areas.

• “Pickable” tiles have an associated
inventory (objects that the player
can interact with).

If a tile is labeled as nonwalkable, when
the character steps on it a function is
invoked subdividing the tile into invisible
squares, the size of a step. On such a
tile the character will always take a real
step and attempt a virtual one in the
direction desired by the player. If the
virtual step is not possible, because an
object occupies the next invisible
square, the character will attempt a
second virtual step in one of the
neighboring directions (at random). If
this second step is possible, movement
will continue otherwise the character
stops in front of the object. The key
frame defining a nonwalkable tile
contains an array describing the invisible
squares blocked by the object on the
tile. The array is generated by a
separate Flash application when the
space is designed, based on the shape
of the graphic object on the tile.

c. Character and NPC’s
The Character and the Non Playable
Characters (NPC’s) movie clips have
exactly the same structure and are
sharing the same basic code except for
their logic of movement, which is
included from different Action Script (as)
files. The visual appearance of a
character is also designed as an
external movie (.swf) and is ‘created’ by
the player during the character
customization dialogue, or specified in
the game logic, for NPC’s. Characters
are designed and animated in 3D Studio
Max and/or Swift 3D, then rendered and
exported on layers as frame-by-frame
animations for Flash (.swt – highlights,
colors, and shadows). The animation
contains 5 sequences of one step
identified by labels. The remaining 3
steps needed to cover the 8 possible
directions of movement are created by
mirroring the character (scaleX = -
100%). After import, the color layer is
again broken into layers corresponding
to the components that can have custom
colors. Shapes in each layer are then
converted to color objects and custom
named in order to make them visible for
the character customization dialogue. As

 7

specified above, the movement logic is
assigned using the include directive
from external as files. It is predefined for
the character only, and can be
customized for NPC’s.

d. Tiles as external movies
The tile is an external .swf loaded by the
Map and controlled by information
stored in the Maps array(s). Building a
new level in the game, or a different
game, involves the following steps:
• Design the environment, crop to the

large tile size, and load components
in the structure of the tile object;

• Fill in a Maps array containing the
arrangement of tiles and their
attributes (for nonwalkable tiles the
invisible squares array must be built
using the existing Flash app);

• Create the graphics for Characters
and NPC’s;

• Define custom movement logic and
behavior for NPC’s;

• Define scoring logic in external
action script files (as) and any
additional items that should be
loaded during the game as external
movies (.swf);

• Define inventories and their visual
appearance as external movies
(.swf).

Although not yet a fully developed game
engine, this approach proved elastic
enough to accommodate different
spaces and scenarios in the Contagion
game, at both character and mission
level. The programming effort in game
development was also reduced to less
than 30%.

For the future

We hope that the newly released
version of Flash will improve the
performance of the engine and that new
features will allow us to improve the
quality of graphics in the game.
A recursive “smart-mouse” logic for
more sophisticated obstacle avoidance
was tested, at both map and “stage”
level; it resulted in an unacceptable
overload for the client machine. A
recursive method at the tile level, based
on the invisible squares, is under
development. We are also considering
the alternative of a custom optimized
web-service that could serve back to the
character the best sequence of steps.

References
Avery, A. (2005). “Beyond P-1: Who
plays online” [Electronic version].
Retrieved: August 15, 2005, from
http://www.gamesconference.org/digra2
005/viewabstract.php?id=155

El Rhalibi, A., England, D., Hanneghan,
M., Tang, S. (2005). “Extending software
models to game design” [Electronic
version]. Retrieved August 15, 2005,
from
http://www.gamesconference.org/digra2
005/viewabstract.php?id=380

Klas, (2002). “Tilebased games in Flash
5”. Retrieved May 2004 from
http://oos.moxiecode.com/

“Top 200 Hot Games”. Retrieved May
2004, from
http://www.colonize.com/content/display
games.nc.php?a=51&b=100

Pa, T. (2004). “Tile Based Games”.
Retrieved May 2004, from
http://www.tonypa.pri.ee/tbw/

“Pharaoh’s Tomb”. Retrieved May 2004
from
http://www.groovyjava.com/games/phar
aoh-tomb/pharaohs-tomb.php

Rouse, R. (2001). "Game Design
Theory & Practice", Wordware
Publishing Inc.

Stridsman, M. (2004). “Tile based /
object based Flash tutorial”. Retrieved
May 2004, from
http://www.strille.net/tutorials/part1_scrol
ling.php

Acknowledgements
The creativity and enthusiasm of Co-op
students from the Seneca College
Computer Studies Department, Rita
Kassab and Mikko Haapoja, contributed
greatly to the outcome of this project.
The authors also wish to acknowledge
the critically important role of other
members of the Contagion development
team including Suzanne de Castell,
Jennifer Jensen, Nicholas Taylor and
Nis Bojin who provided innovative
suggestions and critiques that helped to
move the game engine to the current
level of functionality.

http://www.gamesconference.org/digra2005/viewabstract.php?id=155
http://www.gamesconference.org/digra2005/viewabstract.php?id=155
http://www.gamesconference.org/digra2005/viewabstract.php?id=380
http://www.gamesconference.org/digra2005/viewabstract.php?id=380
http://oos.moxiecode.com/
http://www.colonize.com/content/displaygames.nc.php?a=51&b=100
http://www.colonize.com/content/displaygames.nc.php?a=51&b=100
http://www.tonypa.pri.ee/tbw/
http://www.groovyjava.com/games/pharaoh-tomb/pharaohs-tomb.php
http://www.groovyjava.com/games/pharaoh-tomb/pharaohs-tomb.php
http://www.strille.net/tutorials/part1_scrolling.php
http://www.strille.net/tutorials/part1_scrolling.php

	Abstract
	Introduction
	The game engine development described here is part of the SAGE Project. ("Simulation and Advanced Gaming Environments for Learning" is a SSHRC funded project exploring the potential of simulations and games to support learning in light of new technologies, new media and our knowledge of how people learn.) The game created in this project, Contagion, aims to provide an educational experience relating to health issues. It is expected to function in Canadian high schools and must run over the Internet, even at low bandwidth. Since the game will be played in homes and school computer labs, no component of the game should be installed on the client machine. Most important is that the game must be appealing to the target group, and provide the look and feel that approximates commercial 3D gaming environments.
	Background Research
	Brief Survey of Game Engine Development
	For the future

